Impacts of the Cretaceous Terrestrial Revolution and KPg Extinction on Mammal Diversification

Robert W. Meredith,¹ Jan E. Janecka,² John Gatesy,¹ Oliver A. Ryder,² Colleen A. Fisher,² Emma C. Teeling,⁴ Alisha Goodbla,⁵ Eduardo Eizirik,⁵ Taiz L. L. Simão,⁵ Tanja Stadler,⁵ Daniel L. Rabosky,⁷ Rodney L. Honeycutt,⁶ John J. Flynn,⁹,¹⁰ Colleen M. Ingram,⁹ Cynthia Steiner,³ Tiffani L. Williams,¹¹ Terence J. Robinson,¹² Angela Burk-Herrick,¹³, Michael Westerman,¹⁴ Nadia A. Ayoub,¹,¹⁵ Mark S. Springer,¹,¹⁶,17 William J. Murphy,²,¹⁶

¹Department of Biology, University of California, Riverside, CA 92521, USA. ²Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX 77843, USA. ³San Diego Zoo’s Institute for Conservation Research, Escondido, CA 92027, USA. ⁴UCD School of Biology and Environmental Science, University College Dublin, Belfield, Dublin 4, Ireland. ⁵Faculdade de Biociências, PUCRS, Porto Alegre, RS 90619–900, Brazil. ⁶Institut für Integrative Biologie, Eidgenössische Technische Hochschule Zurich, 8092 Zurich, Switzerland. ⁷Department of Integrative Biology, University of California, Berkeley, CA 94720, USA. ⁸Division of Natural Science, Pepperdine University, Malibu, CA 90263, USA. ⁹Division of Paleontology and Sackler Institute of Comparative Genomics, American Museum of Natural History, New York, NY 10024, USA. ¹⁰Richard Glider Graduate School, American Museum of Natural History, New York, NY 10024, USA. ¹¹Department of Computer Science, Texas A&M University, College Station, TX 77843, USA. ¹²Department of Botany and Zoology, University of Stellenbosch, Matieland 7602, South Africa. ¹³Chaffey College, Rancho Cucamonga, CA 91737, USA. ¹⁴Genetics Department, LaTrobe University, Bundooora, Victoria 3086, Australia. ¹⁵Department of Biology, Washington and Lee University, Lexington, VA 24450, USA.

*First and last authorship determined by coin flip.

†To whom correspondence should be addressed. E-mail: mark.springer@ucr.edu (M.S.S.); wmurphy@cvm.tamu.edu (W.J.M.)

Previous analyses of relations, divergence times, and diversification patterns among extant mammalian families have relied on supertree methods and local molecular clocks. We constructed a molecular supermatrix for mammalian families and analyzed these data with likelihood-based methods and relaxed molecular clocks. Phylogenetic analyses resulted in a robust phylogeny with better resolution than phylogenies from supertree methods. Relaxed clock analyses support the long-fuse model of diversification and highlight the importance of including multiple fossil calibrations that are spread across the tree. Molecular timetrees and diversification analyses suggest important roles for the Cretaceous Terrestrial Revolution and Cretaceous-Paleogene mass extinction in opening up ecospace that promoted interordinal and intraordinal diversification, respectively. By contrast, diversification analyses provide no support for the Eocene delayed rise of present-day mammals hypothesis.

The ~5400 described species of living mammals evolved to occupy diverse ecological niches and include arboreal, fossorial, volant, aquatic, and terrestrial forms, some of which exhibit 100 million-fold differences in body mass (1, 2). Mammals exhibit striking examples of ecomorphological convergence that has led to contentious debates in modern systematics (3–5). The diversity of living and extinct mammalian species is documented by an ~220 million year fossil record and has evolved against the backdrop of radical alterations in terrestrial floras during the Cretaceous Terrestrial Revolution (KTR), the Cretaceous-Paleogene (KPg) mass extinction, continental rearrangements, and changes in key environmental parameters such as average global temperature. However, the impact of these drivers on taxonomic diversification, particularly near the KPg boundary, remains controversial (6–8).

Previous molecular studies have elucidated mammalian interordinal relationships (9–11). One study (8) that examined relationships and divergence times among all living mammalian families employed matrix representation with parsimony (MRP) supertrees, and was compromised by including numerous source phylogenies with overlapping data (12, 13). The supertree study (8) proposed that there was a dramatic upturn in diversification rates in the Eocene ~55-50 million years ago (Mya), but this hypothesis was inferred from a topology that contained numerous polytomies, and was dated with a combination of local molecular clocks and pure birth interpolation for internal nodes. Even with these limitations this timetree (8) underpins numerous studies in comparative biology (14–17). Here we report an analysis of relationships, divergence times, and diversification patterns...
among 97.99% of mammalian families (1, 2) on the basis of a molecular supermatrix that includes 164 mammals, five outgroups, and 26 gene fragments (tables S1, S2). The resulting DNA and protein alignments comprise 35,603 base pairs (bp) and 11,010 amino acids (AA), respectively. Divergence time estimates from molecular data employed a large assemblage of fossil calibrations (table S3).

Phylogenetic relationships from maximum likelihood (ML) and Bayesian methods are well resolved across the mammalian tree. More than 90% of the nodes have bootstrap support ≥90% and posterior probabilities ≥0.95 (Fig. 1, figs. S1–S4). AA and DNA ML trees are in agreement for 163/168 internal nodes (figs. S1–S4). The MRP supertree (8) failed to recover ~30% of our well-supported nodes (Fig. 1). These disagreements occur in some of the most speciose mammalian clades, including bats, rodents, and carnivorans, and may potentially impact the conclusions of numerous studies that have relied on the MRP topology. Our phylogeny improves upon previous resolution (8), and provides a character matrix-based framework for re-evaluating early mammalian divergence times.

Results derived from coalescence methods (18–19) were broadly similar to ML and Bayesian supermatrix methods, but in some cases failed to recover well-substantiated clades such as Amniota, Haplorhini, and Odontoceti (13, figs. S5–S8). Coalescence methods assume that discrepancies between individual gene trees and the species tree are solely the result of incomplete lineage sorting, but our results suggest otherwise and highlight difficulties of applying coalescence methods to deep-level phylogenetic problems where differences between individual gene trees often result from problems such as long branch attraction (13).

Rates of molecular evolution range over an order of magnitude for mammalian lineages (20, 21) and present an exceptional challenge for estimating divergence times. Mammals also have a fossil record that provides numerous constraints for calibrating relaxed clocks (22). Accordingly we selected minimum and maximum constraints for 82 different nodes (table S3). Unlike previous studies (8–11), outgroup representation in our analyses provided well-constrained fossil calibrations that precede mammalian diversification and allowed us to bracket controversial interordinal diversifications with both older and younger calibrated nodes. Further, we employed relaxed clock molecular dating methods that utilized eight different combinations of molecule type (DNA versus AA), evolutionary rate (autocorrelated versus independent rates), and hard- versus soft-bounded constraints.

Molecular timetree analyses that used subsets of constraints that were either temporally restricted (deep versus shallow nodes) or topologically confined to groups with fast (rodents) or slow (cetaceans) rates of molecular evolution resulted in poor estimates of divergence times that are in direct conflict with the fossil record (13, table S5). For example, the fossil record provides robust support for the origin of crown-group mysticetes (baleen whales) no later than 20.4 million years ago (23), but soft-bounded analyses with only rodent constraints suggested an age as young as four million years for Mysticeti. These results demonstrate that lineage-specific rate variation can have severe effects on resulting divergence dates when fossil calibrations are sparse and/or unevenly distributed throughout the tree, and suggest that appropriate caution should accompany molecular timetree analyses for taxonomic groups with extensive rate variation and a poor fossil record.

By contrast, all eight relaxed clock analyses that utilized the full suite of fossil constraints yielded divergence time estimates that are largely consistent with each other and with the fossil record (tables S6 and S7). The mean date for the split between placentals and marsupials is ~190 Mya (table S6) and accords well with the discovery of a stem eutherian from the Jurassic (24). Our analyses suggest that only 29–32 mammalian lineages, nearly all of which are stem branches leading to extant orders, may have crossed the KPg boundary (Fig. 1, table S8). Several orders have point estimates of basal diversification that precede the KPg, but only in the case of Eulipotyphla are the composite credibility intervals entirely within the Cretaceous (Table 1, Fig. 2A). This inference is consistent with the Long Fuse Model of mammalian diversification (10, 25), which postulates interordinal diversification in the Cretaceous followed by intraordinal diversification that is mostly restricted to the Cenozoic (Fig. 2A), although conflicts do remain with the Cretaceous eutherian fossil record (7). By contrast, the MRP supertree analysis (8) estimated that ~50% more placental lineages with extant descendants survived the mass extinction at the end of the Cretaceous, and also recovered confidence intervals for basal clade genetic events in seven placental orders that are entirely in the Cretaceous.

Taxon sampling in our data set was chosen to index deeper nodes in Mammalia, and with minor augmentation is complete or nearly so for lineages with extant descendants that diversified in the Cretaceous, Paleocene, and Eocene up through the end of the Lutetian (40.4 Mya; middle Eocene) (13, table S9). Lineage-through-time (LTT) plots from molecular timetrees were analyzed with two statistical methods to detect diversification rate shifts (Fig. 2, B and C) (13, 17, 26). Analyses with both DNA and AA timetrees identified rate increases in the Cretaceous, either at ~100 Mya and/or ~83 Mya, followed by a rate decrease at ~78 Mya (ΔAIC RC test, table S10). This increase in the mammalian diversification rate corresponds to interordinal cladogenesis, and is apparent in diversification plots (Fig. 2D). This is consistent with Benton’s hypothesis that the KTR (125–80
Mya), during which the angiosperm component of floras increased from 0 to 80%, was a key event in the diversification of mammals and birds (27).

By contrast, there was no statistical support for a rate increase at or near the KPg boundary. However, the finding that basal cladogenesis for the majority of orders occurred in the Cenozoic, and that only one order has a 95% credibility interval that is entirely restricted to the Cretaceous, supports the hypothesis (28) that modern mammalian orders originated or only acquired their definitive ordinal characteristics after the KPg mass extinction that resulted in the final demise of non-avian dinosaurs. Whereas previous molecular studies have suggested intraordinal divergences as far back as the early Cretaceous, our results are in better agreement with the fossil record (7) and suggest that we are unlikely to find crown rodents or primates in rocks that are older than the latest Cretaceous (base of the Maastrichtian, 70.6 Mya).

The delayed rise of present-day mammals hypothesis (8) suggests that diversification rates in the direct ancestors of extant mammals were relatively low in the Paleocene before increasing in the Eocene, possibly in response to abiotic drivers (Paleocene-Eocene Thermal Maximum, early Eocene Climatic Optimum) and/or the extinction of Paleocene species that had previously inhibited the ancestors of present-day mammals (8). Our results contradict this hypothesis. No significant rate increases were detected during the early or middle Eocene (Fig. 2). Importantly, diversification rates in the ancestors of present-day mammals were not repressed by Paleocene lineages that subsequently went extinct (8).

The results reported here provide a robust molecular phylogeny for mammalian families and a solid foundation for resolving the remainder of the mammalian hierarchy below the family level. Molecular timetree analyses based on this phylogeny and a comprehensive set of fossil constraints resulted in divergence time estimates that contradict the ‘delayed rise of placental mammals’ hypothesis. Rather, our results are consistent with the hypothesis that both the KTR and the KPg mass extinction played important roles in the early diversification and adaptive radiation of mammals. The KTR increased ecospace diversity, possibly precipitating interordinal diversification, whereas the KPg mass extinction made more of this ecospace available for mammals, promoting the emergence of crown-group orders with their distinctive morphological adaptations.

References and Notes
13. See supporting material on Science Online.
of San Diego provided samples for this project under Materials Transfer Agreements as indicated in Materials and Methods. Requests for materials should be directed to authors/institutions as stipulated in Materials and Methods.

Supporting Online Material

www.sciencemag.org/cgi/content/full/science.1211028/DC1

Materials and Methods

SOM Text

Figs. S1 to S9
Tables S1 to S13

References

12 July 2011; accepted 9 September 2011

Published online 22 September 2011; 10.1126/science.1211028

Fig. 1. Phylogenetic timetree of mammalian families (13) created on the basis of an analysis of the AA matrix (autocorrelated rates, hard-bounded constraints) of 164 mammals, rooted with five vertebrate outgroups (chicken, zebra finch, green anole, frog, zebrafish; see SOM for trees with outgroups). All nodes were strongly supported (BS >90%, BPP >0.95) in AA and DNA analyses except for nodes that are denoted by solid blue circles (conflict between DNA and AA trees) or solid black circles (DNA and AA trees agree, but with BS<90%). Strongly supported nodes that disagree with Bininda-Emonds et al. (8) are indicated with solid red circles. Several nodes that remain difficult to resolve (e.g., placental root) have variable support between studies of rare genomic changes (29, 30), as well as genome-scale datasets (31–33), suggesting that diversification was not fully bifurcating or occurred in such rapid succession that phylogenetic signal tracking true species relationships may not be recoverable with current methods. The KPg boundary is denoted by the transition from gray background (= Mesozoic) to white background (= Cenozoic). Color-coded branches in Placentalia correspond to Laurasiatheria (green), Euarchontoglires (blue), Xenarthra (orange), and Afrotheria (pink). See table S11 for ordinal affiliations of mammalian families. Mammal paintings are by Carl Buell.

Fig. 2. Timescale of major mammalian divergence events during the past 110 My. (A) Colored circles represent cladogenic events leading to the four major groups of placental mammals (light blue) and interordinal splits within Euarchontoglires (dark blue), Laurasiatheria (green), Afrotheria (pink), and Marsupialia (dark purple). The split betweenornithorhynchids and tachyglossids is shown in light purple (Monotremata). Basal divergences within crown-group placental and marsupial orders are shown in orange (also see Table 1). 95% composite credibility intervals are shown for ordinal divergences as horizontal bars. Basal cladogenesis occurred near or after the KPg mass extinction event, ~65.5 Mya, for almost all orders. Diversification rate shifts detected by (B) TreePar and (C) Laser are denoted with green (rate increase) and red (rate decrease) arrows for rate shifts that were identified in analyses with both AA and DNA timetrees (table S10). (D) Sliding window analysis of the net diversification rate (originations/lineage/window) based on mean divergence estimates from eight different analyses.
Table 1. Divergence times estimated in this study for major ordinal and superordinal groups, and comparison to the results of the MRP supertree (8). 95% credibility intervals are listed in parentheses. Asterisks denote orders. Indentations in taxon names denote hierarchical relationships.

<table>
<thead>
<tr>
<th>Taxon</th>
<th>Supermatrix mean Div. Time</th>
<th>MRP (8) Div. Time</th>
<th>Difference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mammalia</td>
<td>217.8 (203.3–238.2)</td>
<td>166.2 (Fixed)</td>
<td>–51.6</td>
</tr>
<tr>
<td>Monotremata*</td>
<td>36.7 (22.4–103.1)</td>
<td>63.6 (52.2–75.0)</td>
<td>26.9</td>
</tr>
<tr>
<td>Theria</td>
<td>190.0 (167.2–215.3)</td>
<td>147.4 (141.8–153.1)</td>
<td>–42.6</td>
</tr>
<tr>
<td>Marsupialia</td>
<td>81.8 (67.9–97.2)</td>
<td>82.5 (71.4–93.7)</td>
<td>0.7</td>
</tr>
<tr>
<td>Paucituberculata*</td>
<td>11.7 (7.2–16.2)</td>
<td>33.2 (26.3–40.1)</td>
<td>21.5</td>
</tr>
<tr>
<td>Didelphimorpha*</td>
<td>31.4 (23.0–38.4)</td>
<td>56.2 (45.9–67.7)</td>
<td>24.8</td>
</tr>
<tr>
<td>Peramelemorpha*</td>
<td>28.0 (21.1–37.1)</td>
<td>36.2 (30.6–41.8)</td>
<td>8.2</td>
</tr>
<tr>
<td>Dasyuromorpha*</td>
<td>30.0 (22.1–41.7)</td>
<td>31.3 (16.2–55.8)</td>
<td>1.3</td>
</tr>
<tr>
<td>Diprotodontia*</td>
<td>52.8 (42.4–64.0)</td>
<td>54.1 (52.4–55.8)</td>
<td>1.3</td>
</tr>
<tr>
<td>Placentalia</td>
<td>101.3 (92.1–116.8)</td>
<td>98.5 (93.2–108.1)</td>
<td>–2.8</td>
</tr>
<tr>
<td>Xenartha*</td>
<td>65.4 (58.4–71.5)</td>
<td>70.5 (65.6–75.4)</td>
<td>5.1</td>
</tr>
<tr>
<td>Afrotheria</td>
<td>80.9 (74.4–96.5)</td>
<td>90.4 (87.3–93.6)</td>
<td>9.5</td>
</tr>
<tr>
<td>Afroscorida*</td>
<td>68.2 (56.8–88.0)</td>
<td>82.4 (78.3–86.4)</td>
<td>14.2</td>
</tr>
<tr>
<td>Macroscelidea*</td>
<td>49.1 (37.7–57.2)</td>
<td>47.5 (39.9–55.6)</td>
<td>–1.6</td>
</tr>
<tr>
<td>Paenungulata</td>
<td>64.3 (56.0–76.6)</td>
<td>75.8 (72.4–79.2)</td>
<td>11.5</td>
</tr>
<tr>
<td>Hyracoidea*</td>
<td>6.1 (3.9–8.3)</td>
<td>18.6 (17.8–19.5)</td>
<td>12.5</td>
</tr>
<tr>
<td>Proboscidea*</td>
<td>5.3 (1.8–8.0)</td>
<td>19.5 (7.6–31.4)</td>
<td>14.2</td>
</tr>
<tr>
<td>Sirenia*</td>
<td>31.4 (25.0–34.4)</td>
<td>52.2 (37.9–66.5)</td>
<td>20.8</td>
</tr>
<tr>
<td>Boreoeutheria</td>
<td>92.0 (82.9–107.6)</td>
<td>96.1 (92.9–98.4)</td>
<td>4.1</td>
</tr>
<tr>
<td>Laurasiatheria</td>
<td>84.6 (78.5–93.0)</td>
<td>87.8 (85.0–90.5)</td>
<td>3.2</td>
</tr>
<tr>
<td>Eulipotyphla*</td>
<td>77.3 (70.7–85.8)</td>
<td>82.5 (79.8–85.3)</td>
<td>5.2</td>
</tr>
<tr>
<td>Chiroptera*</td>
<td>66.5 (62.3–71.3)</td>
<td>71.2 (68.0–74.3)</td>
<td>4.7</td>
</tr>
<tr>
<td>Perissodactyla*</td>
<td>56.8 (55.1–61.0)</td>
<td>55.8 (51.1–60.5)</td>
<td>–1.0</td>
</tr>
<tr>
<td>Pholidota*</td>
<td>25.3 (16.9–35.7)</td>
<td>19.1 (7.3–46.9)</td>
<td>–6.2</td>
</tr>
<tr>
<td>Carnivora*</td>
<td>54.7 (47.4–60.6)</td>
<td>63.4 (59.8–67.1)</td>
<td>8.7</td>
</tr>
<tr>
<td>Cetartiodactyla*</td>
<td>65.4 (62.3–68.5)</td>
<td>70.7 (67.6–73.7)</td>
<td>5.3</td>
</tr>
<tr>
<td>Euarchontognires</td>
<td>83.3 (74.1–97.8)</td>
<td>91.8 (90.0–93.8)</td>
<td>8.5</td>
</tr>
<tr>
<td>Primatomorpha</td>
<td>82.0 (73.7–97.4)</td>
<td>88.5 (85.9–91.0)</td>
<td>6.5</td>
</tr>
<tr>
<td>Primates*</td>
<td>71.5 (64.3–78.4)</td>
<td>84.5 (81.9–87.1)</td>
<td>13.0</td>
</tr>
<tr>
<td>Dermoptera*</td>
<td>7.4 (4.5–13.2)</td>
<td>15.0 (10.2–19.9)</td>
<td>7.6</td>
</tr>
<tr>
<td>Scandentia*</td>
<td>55.9 (45.0–63.9)</td>
<td>31.7 (29.9–34.7)</td>
<td>–24.2</td>
</tr>
<tr>
<td>Glires</td>
<td>79.5 (71.5–94.1)</td>
<td>88.9 (87.8–90.1)</td>
<td>9.4</td>
</tr>
<tr>
<td>Rodentia*</td>
<td>69.0 (64.1–74.8)</td>
<td>82.8 (80.2–85.4)</td>
<td>13.8</td>
</tr>
<tr>
<td>Lagomorpha*</td>
<td>50.2 (47.4–56.9)</td>
<td>64.3 (60.0–68.7)</td>
<td>14.1</td>
</tr>
</tbody>
</table>

Mean difference (absolute values) for orders = 11.1